Publications

The foundation of PanDA's architecture, design, concepts, implementation, and operational insights is supported by an array of peer-reviewed publications, encompassing both journal articles and conference proceedings.

Recommended for citation

Tadashi Maeno, Aleksandr Alekseev, Fernando Harald Barreiro Megino, Kaushik De, Wen Guan, Edward Karavakis, Alexei Klimentov, Tatiana Korchuganova, FaHui Lin, Paul Nilsson, Torre Wenaus, Zhaoyu Yang and Xin Zhao
PanDA: Production and Distributed Analysis System

Maeno, T. et al., PanDA: Production and Distributed Analysis System, Comput Softw Big Sci 8, 4 (2024)

https://doi.org/10.1007/s41781-024-00114-3

@article{panda2023,
	author = {{Maeno}, Tadashi and {Alekseev}, Aleksandr and
			{Barreiro Megino}, Fernando Harald and {De}, Kaushik and
			{Guan}, Wen and {Karavakis}, Edward and
		 	{Klimentov}, Alexei and {Korchuganova}, Tatiana and
			{Lin}, FaHui and {Nilsson}, Paul and {Wenaus}, Torre and
		 	{Yang}, Zhaoyu and {Zhao}, Xin},
			title = "PanDA: Production and Distributed Analysis System",
		 	journal = "Computing and Software for Big Science",
			volume = "8",
			year = "2024",
			month = "01",
			day = "23",
			issn = "2510-2044",
			doi = "10.1007/s41781-024-00114-3",
			url = "https://doi.org/10.1007/s41781-024-00114-3",
			publisher = "Springer International Publishing"
}

Selected Conference Proceedings

  • T. Maeno et al, Utilizing Distributed Heterogeneous Computing with PanDA in ATLAS, to appear in EPJ Web of Conferences, 2023
  • E. Karavakis et al, Integrating the PanDA Workload Management System with the Vera C. Rubin Observatory, to appear in EPJ Web of Conferences, 2023
  • W. Guan et al, Distributed Machine Learning with PanDA and iDDS in LHC ATLAS, to appear in EPJ Web of Conferences, 2023
  • F H Barreiro Megino et al, Managing the ATLAS Grid through Harvester, EPJ Web of Conferences 245, 03010, 2020
  • T. Maeno et al, Harvester : an edge service harvesting heterogeneous resources for ATLAS, EPJ Web Conf., 214 03030, 2019
  • F H Barreiro Megino et al, The Future of Distributed Computing Systems in ATLAS: Boldly Venturing Beyond Grids, EPJ Web Conf., 214, 03047, 2019
  • P. Svirin et al, BigPanDA: PanDA Workload Management System and its Applications beyond ATLAS, EPJ Web Conf., 214, 03050, 2019
  • A. Anisenkov et al, Global heterogeneous resource harvesting: the next-generation PanDA Pilot for ATLAS, J. Phys.: Conf. Ser. 1085 032031, 2018
  • A Beche et al, Supercomputers, Clouds and Grids powered by BigPanDA for Brain studies, J. Phys.: Conf. Ser. 1085 032003, 2018
  • A A Alekseev et al, ATLAS BigPanDA monitoring, J. Phys.: Conf. Ser. 1085 032043, 2018
  • A A Alekseev et al, Global heterogeneous resource harvesting: the next-generation PanDA Pilot for ATLAS, J. Phys.: Conf. Ser. 1085 032031, 2018
  • A A Alekseev et al, Building analytical platform with Big Data solutions for log files of PanDA infrastructure, J. Phys.: Conf. Ser. 1015 032003, 2018
  • F H Barreiro Megino et al, PanDA for ATLAS distributed computing in the next decade, J. Phys.: Conf. Ser. 898 052002, 2017
  • F H Barreiro Megino et al, ATLAS WORLD-cloud and networking in PanDA, J. Phys.: Conf. Ser. 898 052011, 2017
  • F H Barreiro Megino et al, PanDA: Exascale Federation of Resources for the ATLAS Experiment at the LHC, EPJ Web of Conferences, 108, 01001, 2016
  • A Klimentov et al, Integration Of PanDA Workload Management System With Supercomputers for ATLAS and Data Intensive Science, J. Phys.: Conf. Ser. 762 012021, 2016
  • E Karavakis et al, gLExec Integration with the ATLAS PanDA Workload Management System, J. Phys.: Conf. Ser. 664 062022, 2015
  • K De et al, Integration of PanDA workload management system with Titan supercomputer at OLCF, J. Phys.: Conf. Ser. 664 092020, 2015
  • K De et al, The future of PanDA in ATLAS distributed computing, J. Phys.: Conf. Ser. 664 062035, 2015
  • A Klimentov et al, Next Generation Workload Management System For Big Data on Heterogeneous Distributed Computing, J. Phys.: Conf. Ser. 608 012040, 2015
  • P Nilsson et al, Next Generation PanDA Pilot for ATLAS and Other Experiments, J. Phys.: Conf. Ser. 513 032071, 2014
  • T Maeno et al, Evolution of the ATLAS PanDA workload management system for exascale computational science, J. Phys.: Conf. Ser. 513 032062, 2014
  • H Ito et al, Development of noSQL data storage for the ATLAS PanDA Monitoring System, J. Phys.: Conf. Ser. 396 0520411, 2012
  • T Maeno et al, Evolution of the ATLAS PanDA Production and Distributed Analysis System, J. Phys.: Conf. Ser. 396 032071, 2012
  • T Maeno et al, PD2P: PanDA Dynamic Data Placement for ATLAS, J. Phys.: Conf. Ser. 396 032070, 2012
  • M Potekhin, Development of noSQL data storage for the ATLAS PanDA Monitoring System, J. Phys.: Conf. Ser. 368 012006, 2012
  • P Nilsson et al, The ATLAS PanDA Pilot in Operation, J. Phys.: Conf. Ser. 331 062040, 2011
  • A Klimentov et al, The ATLAS PanDA Monitoring System and its Evolution, J. Phys.: Conf. Ser. 331 072058, 2011
  • T Maeno et al, Overview of ATLAS PanDA Workload Management, J. Phys.: Conf. Ser. 331 072024, 2011
  • P Nilsson, Experience from a pilot based system for ATLAS, J. Phys.: Conf. Ser. 119 062038, 2008
  • T Maeno, PanDA: distributed production and distributed analysis system for ATLAS, J. Phys.: Conf. Ser. 119 062036, 2008

Ready to Experience PanDA WMS?

Join the PanDA community today! We are always happy to chat. You can drop us a mail and we will reply as quickly as possible.